Plasma Cell–Free DNA Profiling of PTEN-PI3K-AKT Pathway Aberrations in Metastatic Castration-Resistant Prostate Cancer

Edmond M. Kwan, MBBS, PhD1,2; Chao Dai, PhD3; Heidi Fettke, PhD4; Christine Hauser, PhD5; Maria M. Docanto, BMEdSc1; Patricia Bukczynska, MBiomedSci4; Nicole Ng, BApsc6,5; Siavash Foroughi, MSC5; Lisa-Jane K. Graham, BSc1; Kate Mahon, MBBS, PhD7,8,2; Winston Tan, MD7,10; Xiaohong Wang, PhD7; Zhixian Zhao, PhD1; Tianlian Zheng, MS1; Kemin Zhou, PhD3; Jianjun Yu, PhD2; Pan Du, PhD3; Lisa G. Horvath, MBBS, PhD9,8,11; Shidong Jia, MD, PhD3; Manish Kohli, MD12; and Arun A. Azad, MBBS, PhD1,13,14

PURPOSE Tumor tissue from metastatic castration-resistant prostate cancer (mCRPC) harbors frequent copy number variations (CNVs) in the PTEN-PI3K-AKT pathway. However, identifying CNVs in plasma cell–free DNA (cfDNA) has proven to be challenging. With emerging data supporting Akt inhibition in PTEN-deficient mCRPC, we profiled PTEN-PI3K-AKT pathway aberrations in patients with mCRPC using a novel cfDNA assay optimized for CNV detection.

METHODS A next-generation sequencing–based cfDNA assay was used to profile 231 patients with mCRPC from two independent cohorts (Australian, n = 78; United States, n = 153). PTEN-PI3K-AKT pathway genomic aberrations were correlated with clinical outcomes, including progression-free survival and overall survival (OS).

RESULTS PTEN loss and PIK3CA gain were detected in 37% (85 of 231) and 17% (39 of 231) of patients, respectively. Poorer outcomes were observed in patients with PTEN-PI3K-AKT pathway aberrations, including those with dual PTEN loss and PIK3CA gain (hazard ratio 2.3, 95% CI 1.2 to 4.4). Cumulative CNV burden in the PTEN-PI3K-AKT and androgen receptor (AR) pathways was associated with significantly worse clinical outcomes (0 v 1 v ≥ 2 CNVs in Australian cohort: median OS 33.5 v 17.2 v 9.7 months, P < .001; 0 v 1 v ≥ 2 CNVs in US cohort: median OS 35.5 v 14.3 v 9.2 months, P < .001). Notably, 21% (31 of 146) of PTEN-neutral patients harbored alternative PTEN-PI3K-AKT pathway aberrations.

CONCLUSION PTEN-PI3K-AKT pathway CNVs were readily detected using our cfDNA assay, with the prevalence of PTEN loss comparable with tissue-based studies. Additional PTEN-PI3K-AKT pathway aberrations were found in one fifth of PTEN-neutral cases. Concurrent CNVs in the PTEN-PI3K-AKT and AR pathways portended poor survival, and identifying this high-risk patient subset for dual AR/Akt inhibition may optimize precision treatment with Akt inhibitors in mCRPC.

JCO Precis Oncol 5:622-637. © 2021 by American Society of Clinical Oncology

INTRODUCTION

The last decade has seen an expansion in life-prolonging therapeutics for metastatic castration-resistant prostate cancer (mCRPC), including androgen receptor (AR) pathway inhibitors (ARPIs), the taxane chemotherapeutic agent cabazitaxel, and inhibitors of poly(ADP-ribose) polymerase.15 Although the development of drugs targeting phosphatidylinositol-3-kinase (PI3K) signaling has long been investigated across a range of solid tumors,6,7 recent findings from the IPATential-150 study of abiraterone and pan-Akt inhibitor ipatasertib underscore the potential of co-targeting these pathways in prostate cancer.8,9 Ipatasertib significantly improved radiographic progression-free survival (PFS); however, of note, the benefit was only observed in the context of PTEN loss. Large-scale tissue sequencing efforts have demonstrated frequent dysregulation of the PTEN-PI3K-AKT pathway in mCRPC, most commonly with PTEN tumor suppressor loss (40%-60%) and less frequently by amplification or gain-of-function mutations in PIK3CA, PIK3CB, and AKT1 (<10% each).10-20 The challenges of acquiring high-quality metastatic tissue for molecular analysis and recognition that disease evolution may not be adequately reflected in archival tissue have led to the emergence of liquid biopsies as an alternative path toward biomarker discovery in advanced prostate cancer.21 However, cell-free DNA (cfDNA) studies have consistently shown lower frequency of copy number variations (CNVs) compared with tissue cohorts, representative of challenges in ploidy assessment in environments with low circulating tumor DNA (ctDNA) fraction and high tumor heterogeneity.22,23 This is arguably no more apparent than with PTEN loss, where prevalence may be as low as 10%-15% in cfDNA studies after accounting for samples omitted because of low ctDNA fraction.24-27 Given that metastatic prostate cancer is characterized by recurrent gains and deletions,11,17 blood-based assays capable of accurate CNV status assessment are urgently needed.
Recent liquid biopsy studies have implicated PTEN-PI3K-AKT pathway aberrations in driving disease progression and treatment resistance in mCRPC,
27-29 although not all are in agreement.18,30 Furthermore, the individual contribution of PTEN-PI3K-AKT pathway members besides PTEN is less well-defined. Accurate identification of PTEN-PI3K-AKT pathway aberrations in ctDNA and understanding their interaction with more established biomarkers including AR gain24,31-35 hold important clinical implications, particularly in light of the results from IPATential-150.29,36

Herein, we employ a targeted, high-sensitivity, next-generation sequencing (NGS) cfDNA assay to profile the PTEN-PI3K-AKT pathway in two independent mCRPC cohorts totaling 231 patients, correlating genomic aberrations with longitudinal clinical outcomes. We show that plasma cfDNA can be used to determine copy number status in mCRPC and may be a highly valuable tool for identifying patients suitable for precision treatment with PTEN-PI3K-AKT pathway inhibitors.

METHODS

Patient Cohorts

This multi-institutional prospective biomarker study collected plasma samples from 231 patients across two independent cohorts in Australia and the United States. Study approval was acquired from each institution’s human research ethics committee, with all participants providing written informed consent before sample collection. In both cohorts, peripheral blood was collected immediately before commencing systemic therapy and processed as described in the Data Supplement.

The Australian cohort comprised 78 patients with mCRPC commencing systemic therapy at two tertiary institutions (Monash Health and Chris O’Brien Lifehouse) between September 2016 and April 2019. Forty-nine (63%) patients commenced ARPI therapy (abiraterone or enzalutamide) and 29 (37%) patients commenced taxane chemotherapy (docetaxel or cabazitaxel). Baseline clinical characteristics and previous systemic treatment exposure are presented in the Data Supplement. The median follow-up time for nondeceased patients was 28.0 months.

The US cohort comprised 153 patients from the Mayo Clinic enrolled between September 2009 and March 2014 with either biochemically or radiographically progressive mCRPC. Although genomic features of this cohort have been partially characterized,29,36 the analyses undertaken here represent unique hypotheses using a targeted and sensitive NGS panel that have not been explored before. Baseline clinical characteristics are presented in the Data Supplement. The median follow-up time for nondeceased patients was 80.7 months.

Targeted cfDNA Sequencing

All plasma samples underwent cfDNA sequencing (Pre-dicine Inc., Hayward, CA) from a single tube (10 mL) of peripheral blood.29,37 Relevant to this study, the assay targets all coding regions of PTEN, PIK3CA, and AR and selected hotspot regions of AKT1, mTOR, PPP2R1A, STK11, TSC1, and TSC2 (see the Data Supplement for the full gene list). Orthogonal validation of CNVs with low-pass whole genome sequencing (LP-WGS) was performed on a subset of Australian cohort samples (n = 46). LP-WGS data were analyzed using ichorCNA software,38 which estimates plasma CNVs using a hidden Markov model. A detailed description of DNA extraction, sequencing, analytical validation, and bioinformatics analysis (somatic mutation identification, CNV detection and cfDNA fraction estimation, and ichorCNA tool settings) is presented in the Data Supplement.

Clinical Outcomes and Statistical Analysis

Kaplan-Meier survival estimates (log-rank test) and multivariable Cox regression models were used to assess the association between PTEN-PI3K-AKT pathway aberrations...
A

<table>
<thead>
<tr>
<th>Copy Number Gain</th>
<th>Expected Copy</th>
<th>Sn % (95% CI)</th>
<th>PPV % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00 to 2.19</td>
<td>32 (14.9 to 53.5)</td>
<td>89 (51.8 to 99.7)</td>
<td></td>
</tr>
<tr>
<td>2.19 to 2.23</td>
<td>45 (23.1 to 68.5)</td>
<td>82 (48.2 to 99.7)</td>
<td></td>
</tr>
<tr>
<td>2.23 to 2.37</td>
<td>100 (83.2 to 100)</td>
<td>100 (83.2 to 100)</td>
<td></td>
</tr>
<tr>
<td>>2.37</td>
<td>100 (92.3 to 100)</td>
<td>100 (92.3 to 100)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copy Number Loss</th>
<th>Expected Copy</th>
<th>Sn % (95% CI)</th>
<th>PPV % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80 to 1.85</td>
<td>66 (50.7 to 79.1)</td>
<td>89 (73.3 to 96.8)</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>100 (83.9 to 100)</td>
<td>100 (83.9 to 100)</td>
<td></td>
</tr>
<tr>
<td>1.70</td>
<td>100 (59 to 100)</td>
<td>100 (59 to 100)</td>
<td></td>
</tr>
<tr>
<td><1.70</td>
<td>100 (88.4 to 100)</td>
<td>100 (88.4 to 100)</td>
<td></td>
</tr>
</tbody>
</table>

B

Australian cohort

- 54% CNV 52%
- 41% CNV 31%
- 1% CNV 1%
- 1% CNV 1%
- 51% CNV 51%
- Prior chemotherapy
- Prior ARPI

US cohort

- 33% CNV 29%
- 18% CNV 10%
- 1% CNV 1%
- 1% CNV 1%
- 37% CNV 37%

Legend

- Yes Alterations
- Gain
- Missense Mutation
- Frameshift Mutation
- Splice Site Mutation
- Deletion
- In-Frame Mutation
- Nonsense Mutation
- Multiple Mutations

Kwan et al

© 2021 by American Society of Clinical Oncology

624 © 2021 by American Society of Clinical Oncology
and clinical outcomes, including PFS (time from treatment commencement to first confirmed prostate-specific antigen progression, clinical or radiographic progression, or death from prostate cancer) and overall survival (OS; time from treatment commencement until death from any cause). Where an event had not occurred at time of data analysis, survival outcomes were right censored at the date of last patient contact. Statistical significance was defined as $P < .05$.

Study Oversight and Responsibilities

Samples were obtained as part of noninterventional biomarker studies. Study investigators were involved in initial sample acquisition, sample processing, and clinical data collection. Predicine Inc. were responsible for sequencing and bioinformatic analysis of cfDNA samples only and were not otherwise involved in study design, subject accrual, clinical data collection, or analysis of clinico-genomic associations.

RESULTS

Analytical Validation of a cfDNA-Based Assay Capable of Detecting CNV Alterations in Advanced Prostate Cancer

Given the challenges of accurate copy number estimation in liquid biopsy specimens, development of a novel NGS-based assay capable of enhanced detection of plasma CNVs, including PTEN loss, is a key priority. The assay used in this study employs a custom targeted panel-based approach, in combination with proprietary operation chemistry and analysis algorithms. Hybrid capture probes targeting single-nucleotide polymorphisms in the introns both upstream and downstream of relevant genes are used to capture additional copy number information.

Multiple steps were taken for analytical validation (see the Data Supplement for full details). Briefly, copy number loss performance was assessed using tumor- or normal-matched cancer cell lines as true positive and true negative samples. Extracted DNA was titrated to seven tumor fraction levels ranging from 5% to 75%. Copy number gain performance was evaluated using commercial ctDNA reference material at three tumor fraction levels ranging from 0.25% to 0.5%. The assay limit of detection was determined to be 1.75 copies for copy number loss and 2.23 copies for copy number gain (Fig 1A). Assay specificity was evaluated in 24 healthy donors and determined to be $> 99\%$. Assay precision (both repeatability and within-lab reproducibility) was assessed by measuring variation between 18 sets of the same sample aliquots. The intra-run and intermediate-run precision was measured to be 97.8% (95% CI, 86.5% to 99.9%) and 99.6% (95% CI, 97.5% to 100%), respectively.

Detection, Validation, and Clinical Associations of PTEN-PI3K-AKT Pathway Aberrations

Having demonstrated that this cfDNA assay is capable of reliably detecting CNVs, we then applied it to determine $PTEN$ and $PIK3CA$ copy number status in our two independent mCRPC cohorts. Sequencing metrics for the Australian and US cohorts are provided in the Data Supplement. The workflow for the final 231 patients with analyzable cfDNA sequencing and clinical outcome data are shown in Appendix Fig A1.

$PTEN$ loss was observed in 37% (85 of 231) of patients (Fig 1B). In a subset of Australian cohort patients with additional plasma available, LP-WGS confirmed targeted panel-detected $PTEN$ loss in 90% (28 of 31) of patients (Data Supplement). Discordance was attributed to either focal copy number loss ($n = 2$) or failure of LP-WGS to accurately assess $PTEN$ CNV status in adjacent copy number loss and copy number neutral segments ($n = 1$) (Fig 1C). There was evidence of high correlation for overall copy number as assessed by targeted panel and LP-WGS ($R = 0.85$, Fig 1D).

$PTEN$ loss was strongly associated with shorter PFS and OS in the Australian cohort. When adjusting for baseline clinicopathologic prognostic factors including ctDNA fraction (Data Supplement), this association remained significant in multivariable analysis (Table 1, Fig 2A, and Data Supplement). A similar association was confirmed in the US cohort with respect to OS (Table 1, Fig 2B, and Data Supplement). Association with PFS in the US cohort was not performed as patient enrollment was before the widespread availability of ARPs. Of note, in the 146 $PTEN$-copy number neutral patients in this study, 31 (21%) patients exhibited alternate $PTEN$-PI3K-AKT pathway aberrations (Fig 1B), most commonly $PIK3CA$ mutation and/or gain ($n = 21$, 68%) and $PTEN$ mutation ($n = 7$, 23%). In addition, none of the patients with mutations in $AKT1$
FIG 1. (Continued).

Panel CN
- AU-027: 1.77
- AU-051: 1.71
- AU-072: 1.67

LP-WGS CN
- AU-027: 1.71
- AU-051: 1.66
- AU-072: 1.78

Panel CN
- AU-034: 2.41
- AU-035: 2.41
- AU-055: 1.66

LP-WGS CN
- AU-034: 2.08
- AU-035: 1.66
- AU-055: 1.23

Panel CN
- AU-005: 1.24
- AU-027: 1.66
- AU-055: 1.18

LP-WGS CN
- AU-005: 1.01
- AU-027: 1.23
- AU-055: 0.99
(n = 5) or mTOR (n = 2) across either cohort harbored concurrent PTEN loss and/or mutation. PIK3CA gain was observed in 17% (39 of 231) of patients (Fig 1B). LP-WGS confirmed targeted panel-detected PIK3CA gain in 84% (16 of 19) of Australian cohort patients with additional available plasma, with one patient determined to be PIK3CA neutral and two patients with indeterminate LP-WGS results (Data Supplement). Examination of one patient with discordant CNV status showed evidence of focal copy number gain (Fig 1C). Strong correlation was again noted between targeted panel- and LP-WGS–assessed PIK3CA copy number (Fig 1D, R = 0.80). PIK3CA gain was also independently associated with poor survival outcomes in the Australian cohort, but not the US cohort (Table 1 and Appendix Fig A2).

In the Australian cohort, mutations were most frequently observed in PIK3CA (13 of 78, 17%). PTEN mutations were uncommon at 6% (5 of 78), with AKT1 and mTOR mutations rare (single case each). In the US cohort, PIK3CA mutations were again the most common, albeit at a lower prevalence than the Australian cohort at 10% (15 of 153). PTEN, AKT1, and mTOR mutations were observed in < 5% of patients. Given the low frequency of certain PTEN-PI3K-AKT pathway mutations (eg, AKT1 and mTOR) in both cohorts, correlation with clinical outcomes was restricted to genes mutated in at least five patient samples. In contrast to CNVs, mutations in PTEN-PI3K-AKT pathway genes alone did not significantly correlate with clinical outcomes (Table 1). A full list of PTEN-PI3K-AKT pathway CNVs and mutations for the Australian and US cohort can be found in the Data Supplement.
Cumulative CNVs in the PTEN-PI3K-AKT and AR Pathways Independently Confer Poor Prognosis

We next sought to analyze the clinical impact of cumulative CNVs. Given reciprocal regulation between the PTEN-PI3K-AKT and AR pathways, we included AR in analysis of clinico-genomic correlations. AR mutations were present in 19% (45 of 231) of patients (see the Data Supplement for the list of AR mutations in Australian and US cohorts, respectively). In the Australian cohort, AR mutations did not correlate with any clinical outcomes. By comparison, AR mutations in the US cohort were associated with shorter OS in univariable analysis (hazard ratio [HR] 1.7; 95% CI, 1.1 to 2.7; \(P = .02 \)), but not in multivariable analysis (Table 1). AR gain was present in 42% (96 of 231) of patients (Fig 1B). Of patients who underwent LP-WGS validation in the Australian cohort, 22 of 25 patients (88%) with AR gain were validated with LP-WGS, with excellent correlation between targeted panel and LP-WGS copy number (Fig 1D).

Table 1. Cox Proportional Hazards Analysis of Clinical Outcomes Based on PI3K/AR Pathway Aberrations in Australian and US Cohorts

<table>
<thead>
<tr>
<th>Variable</th>
<th>PFS Univariable Analysis</th>
<th>PFS Multivariable Analysis</th>
<th>OS Univariable Analysis</th>
<th>OS Multivariable Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>P</td>
<td>HR</td>
</tr>
<tr>
<td>Australian cohort (n = 78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN loss</td>
<td>2.5</td>
<td>1.4 to 4.3</td>
<td>.002</td>
<td>3.7</td>
</tr>
<tr>
<td>PIK3CA gain</td>
<td>2.2</td>
<td>1.2 to 4.0</td>
<td>.009</td>
<td>4.1</td>
</tr>
<tr>
<td>AR gain</td>
<td>2.2</td>
<td>1.3 to 3.8</td>
<td>.005</td>
<td>2.4</td>
</tr>
<tr>
<td>Mutations (^{*})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN mutation</td>
<td>0.32</td>
<td>0.08 to 1.3</td>
<td>.12</td>
<td>0.38</td>
</tr>
<tr>
<td>PIK3CA mutation</td>
<td>0.53</td>
<td>0.24 to 1.2</td>
<td>.11</td>
<td>0.67</td>
</tr>
<tr>
<td>AR mutation</td>
<td>0.74</td>
<td>0.41 to 1.3</td>
<td>.32</td>
<td>0.91</td>
</tr>
<tr>
<td>Cum. PTEN-PI3K-AKT and AR pathway CNVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Ref</td>
<td>—</td>
<td>Ref</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>2.6</td>
<td>1.2 to 5.9</td>
<td>.02</td>
<td>5.5</td>
</tr>
<tr>
<td>≥ 2</td>
<td>4.6</td>
<td>2.2 to 9.7</td>
<td>< .001</td>
<td>8.9</td>
</tr>
<tr>
<td>US cohort (n = 153)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN loss</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.6</td>
</tr>
<tr>
<td>PIK3CA gain</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.8</td>
</tr>
<tr>
<td>AR gain</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.7</td>
</tr>
<tr>
<td>Mutations (^{*})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN mutation</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.99</td>
</tr>
<tr>
<td>PIK3CA mutation</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>AR mutation</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
</tr>
<tr>
<td>Cum. PTEN-PI3K-AKT and AR pathway CNVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Ref</td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.2</td>
</tr>
<tr>
<td>≥ 2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Note. All \(P < .05 \) are highlighted in bold. Only PI3K/AR pathway aberrations with \(P < .05 \) in univariable analysis were included in multivariable analysis. Abbreviations: CNV, copy number variation; Cum, cumulative; HR, hazard ratio; OS, overall survival; PFS, progression-free survival.

*Mutations included single nucleotide variants and small insertions or deletions.

\(^{*}\) PTEN-PI3K-AKT pathway mutations that occurred in < 5 patients (AKT1, mTOR, PPP2R1A, STK11, TSC1, and TSC2) were not included in the analysis.

Variables included in Australian cohort MVA: circulating tumor DNA fraction ≥ 2%, prior chemotherapy, prior AR pathway inhibitor therapy, presence of visceral metastasis, presence of pain at baseline, and Eastern Cooperative Oncology Group performance status ≥ 2. See the Data Supplement for complete MVA analysis for cumulative PTEN-PI3K-AKT and AR pathway CNVs.

Variables included in US cohort MVA: circulating tumor DNA fraction ≥ 2%, prior chemotherapy, alkaline phosphatase (log10). See the Data Supplement for complete MVA analysis for cumulative PTEN-PI3K-AKT and AR pathway CNVs.
Examination of LP-WGS plots for the three discordant patients revealed low level AR gains (n = 2) and a focal copy number gain (n = 1) (Fig 1C). With respect to clinical outcomes, AR gain was associated with shorter PFS and OS in univariable and multivariable analyses in both cohorts (Table 1 and Appendix Fig A2).

Next, we hypothesized that cumulative CNVs in the PTEN-PI3K-AKT and AR pathways may predict for worse prognosis. To investigate this, we categorized patients based on the total number of CNVs detected at baseline. Considering PTEN loss, PIK3CA gain, and AR gain collectively across both cohorts, 0/1/≥2 CNVs were observed in 102 (44%), 62 (27%), and 67 (29%) samples. Cumulative CNVs in the PTEN-PI3K-AKT and AR pathways were significantly associated with OS in both the Australian (median OS for 0 <2 CNVs: 35.5 months v 9.2 months, P < .001, log-rank test; Fig 2C) and US cohort (median OS for 0 <2 CNVs: 35.5 months v 9.2 months, P < .001, log-rank test; Fig 2D). Critically, this relationship persisted when multivariable analysis was performed on each cohort separately (Table 1) and in an exploratory subgroup analysis based on ctDNA fraction (above and below 2%) (Appendix Fig A3). Analysis of outcomes by treatment subgroup in the Australian cohort demonstrated that findings were most apparent, as expected, in ARPI-treated patients (Data Supplement).

PIK3CA Gain May Further Potentiate PTEN Loss and Contribute to Worse Clinical Outcomes

To understand the extent to which different CNVs were contributing to poor outcomes, exploratory analyses of various CNV combinations were performed. Given the multiple testing, formal statistical comparison was not undertaken between these subgroups. Although isolated PTEN loss was associated with less favorable outcomes (median OS 11 months v 21 months; HR 1.6; 95% CI, 1.0 to 2.7; log-rank test; Fig 2A), PTEN loss associated with PIK3CA gain was significantly associated with worse outcomes (median OS 11 months v 21 months; HR 1.6; 95% CI, 1.0 to 2.7; log-rank test; Fig 2B).
appealing prospect that liquid biopsy panel detecting focal regions of copy number loss. This raises the potential that the panel-based approach may possess greater sensitivity for detecting focal regions of copy number loss with high sensitivity and specificity. However, detection of PTEN loss in cfDNA has historically been challenging in low ctDNA purity and/or high tumor heterogeneity environments, accounting for suboptimal concordance with tissue-derived CNVs. Having undergone robust analytical and orthogonal validation with both reference material and cell-line titration samples, the cfDNA assay used in this study is capable of detecting copy number loss events with high sensitivity and specificity.

Applying this novel assay to two independent prospective clinical cohorts totaling 231 patients with mCRPC, we observed enhanced detection of PTEN loss (detected in 37% of patients with mCRPC compared with 10%-15% in previous cfDNA studies). We also validated a high proportion of panel-detected PTEN and PIK3CA CNVs using orthogonal validation with LP-WGS. Critically, where cfDNA PTEN copy number status was discordant between the sequencing methods, we showed that the targeted panel-based approach may possess greater sensitivity for detecting focal regions of copy number loss. This raises the appealing prospect that liquid biopsy panel-based assays such as the one described here could complement PTEN tissue testing to identify candidates for targeted treatment including ipatasertib and capivasertib or other PTEN-PI3K-AKT pathway inhibitors.

Our findings support the growing body of preclinical and clinical evidence pointing to significant interactions between the PTEN-PI3K-AKT and AR pathways that contribute to deleterious outcomes. Early attempts to target the PTEN-PI3K-AKT pathway with PI3K and Akt inhibitor monotherapy in PTEN-deficient mCRPC were met with disappointing results, with the reasons apparent with increased appreciation of negative feedback regulation between the two pathways. Acknowledging this relationship, the phase III IPATential-150 trial co-targeted PTEN-PI3K-AKT and AR pathways using abiraterone and the pan-Akt inhibitor ipatasertib, resulting in significant radiographic PFS improvement in PTEN-null tumors over abiraterone monotherapy. It remains to be seen if co-targeting these pathways results in cfDNA clearance of associated aberrations, for which the development of a sensitive and specific assay would be of utility. Furthermore, although this data signals renewed interest in PI3K/Akt targeting in mCRPC, additional aberrations beyond PTEN loss can activate PTEN-PI3K-AKT signaling and warrant exploration.

One such candidate may be PIK3CA gain. When PIK3CA was observed concurrently with PTEN loss, patients appeared to have worse outcomes than those with PTEN loss alone, suggesting that PIK3CA gain potentiates PTEN loss in prostate cancer progression. Traditionally, preclinical data in PTEN-deficient malignancies, including prostate cancer, have supported p110α (encoded by PIK3CB) as the primary PI3K isoform involved in tumorigenesis. However, dependent on the tissue type and pathology, the p110α catalytic subunit (encoded by PIK3CA) may in fact be of equal or greater importance in driving disease outcomes and responsiveness to PTEN-PI3K-AKT pathway inhibition. Further illustrated a key role of PIK3CA in concert with PTEN. Using genetically engineered mouse models of prostate cancer, they demonstrated that a double hit culminating in concurrent PTEN loss and PIK3CA mutation is nonredundant and may instead cooperate to prime the PTEN-PI3K-AKT pathway for rapid progression to invasive carcinoma, greater tumor burden, and de novo castration resistance. Although statistically significant, we note that the absolute improvement in median radiographic PFS with ipatasertib in IPATential-150 was reasonably modest at 2 months. Therefore, much work remains to improve patient selection and thereby enhance the clinical utility of ipatasertib. Our data demonstrate the synergistic role of dual CNVs in the PTEN-PI3K-AKT pathway, and additionally, the impact of cumulative CNV burden in the PTEN-PI3K-AKT and AR pathways. It is plausible that these high-risk patients with dual PTEN-PI3K-AKT pathway with or without AR pathway activation might have tumors that are primed to best respond to co-targeting of PTEN-PI3K-AKT and AR signaling. This warrants further prospective evaluation in clinical trial cohorts to determine if a sensitive and specific cfDNA-based assay can optimize a rational targeted therapeutic decision for using agents such as ipatasertib.

It is also noteworthy that just more than one fifth of PTEN-neutral patients in our study had aberrations in other PTEN-PI3K-AKT pathway partners, with nearly 70% of this subset harboring either PIK3CA gain or mutation. Furthermore,
TABLE 2. Hazard Ratio for Overall Survival Attributable to PI3K/AR Pathway CNVs (Combined Australian and US Cohorts)

<table>
<thead>
<tr>
<th>Variable</th>
<th>n (%)</th>
<th>HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No PI3K/AR pathway CNV</td>
<td>102 (44)</td>
<td>0.32</td>
<td>0.23 to 0.42</td>
</tr>
<tr>
<td>AR gain alone</td>
<td>40 (17)</td>
<td>1.5</td>
<td>1.0 to 2.1</td>
</tr>
<tr>
<td>PIK3CA gain alone</td>
<td>2 (1)</td>
<td>0.6</td>
<td>0.15 to 2.4</td>
</tr>
<tr>
<td>PTEN loss alone</td>
<td>20 (9)</td>
<td>1.6</td>
<td>1.0 to 2.7</td>
</tr>
<tr>
<td>AR gain plus PTEN loss</td>
<td>30 (13)</td>
<td>2.0</td>
<td>1.3 to 3.0</td>
</tr>
<tr>
<td>AR gain plus PIK3CA gain</td>
<td>2 (1)</td>
<td>2.5</td>
<td>0.62 to 10</td>
</tr>
<tr>
<td>PIK3CA gain plus PTEN loss</td>
<td>11 (5)</td>
<td>2.3</td>
<td>1.2 to 4.4</td>
</tr>
<tr>
<td>AR gain plus PTEN loss plus PIK3CA gain</td>
<td>24 (10)</td>
<td>3.2</td>
<td>2.0 to 5.0</td>
</tr>
</tbody>
</table>

NOTE. For each comparison, the analyses compare aberration-positive patients with all patients who did not possess that exact aberration combination.

Abbreviations: CNV, copy number variation; HR, hazard ratio.

AKT1 and mTOR mutations were exclusively seen in PTEN-neutral patients, with the former phenomenon having previously been observed in other studies. Identifying these patients with alternative drivers of PI3K signaling should be prioritized as they may derive clinical benefit from therapeutics targeting the PTEN-PI3K-ARK pathway. Recognizing that PTEN deletion is an early truncal event and PIK3CA aberrations emerge in response to systemic treatment resistance, molecular testing on primary tissue alone may underestimate the true extent of patients who exhibit PTEN-PI3K-ARK pathway activation because of non-PTEN deletion mechanisms. Thus, cfDNA assays of the nature described here will become of increasing importance by potentially broadening the clinical application of PI3K/Akt inhibitors.

We acknowledge certain limitations in our study, including the need for larger and more homogenous data sets in future studies. Likewise, although our analysis was limited to genomic aberrations, multianalyte approaches incorporating transcriptomic, proteomic, and circulating tumor cell enumeration biomarkers have been shown to provide additional predictive value and would be of clear interest in follow-on studies.

In conclusion, multiple novel inhibitors of the PTEN-PI3K-ARK pathway are currently in late-phase development. With heterogeneity of response, strategies to correctly identify tumors with oncogenic addition to the PTEN-PI3K-ARK pathway are vital to optimizing treatment selection. Using a validated cfDNA liquid biopsy assay, we robustly identified PTEN loss in 37% of patients with mCRPC across two independent cohorts, similar to the prevalence observed in tumor tissue. We also demonstrated the negative prognostic potential of PTEN-PI3K-ARK with or without AR pathway CNVs in both cohorts. Importantly, we found that approximately one fifth of PTEN-neutral patients had other activating aberrations in the PTEN-PI3K-ARK pathway. Altogether, our data support the use of liquid biopsy assays to ascertain PTEN and PIK3CA copy number status in mCRPC and possess key clinical relevance given the recent findings of the IPATential-150 clinical trial. Future studies should examine the predictive biomarker potential of CNV quantification in clinical trials and investigate dynamic changes in the PTEN-PI3K-ARK and AR pathways that arise in the context of potent systemic therapy.

AFFILIATIONS

1Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
2Department of Medical Oncology, Monash Health, Melbourne, Australia
3PREDICINE Inc, Hayward, CA
4Peter MacCallum Cancer Centre, Melbourne, Australia
5Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
6Department of Medical Biology, The University of Melbourne, Melbourne, Australia
7Medical Oncology, Chris O’Brien Lifehouse, Sydney, Australia
8University of Sydney, Sydney, Australia
9Garvan Institute of Medical Research, Sydney, Australia
10Division of Medical Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
11Royal Prince Alfred Hospital, Sydney, Australia
12Division of Medical Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
13Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
14Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia

CORRESPONDING AUTHOR

Arun A. Azad, MBBS, PhD, Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia; e-mail: arun.azad@petermac.org.

EQUAL CONTRIBUTION

PRIOR PRESENTATION

SUPPORT

AUTHOR CONTRIBUTIONS

Conception and design: Edmond M. Kwan, Lisa G. Horvath, Manish Kohli, Arun A. Azad

Administrative support: Maria M. Docanto, Nicole Ng, Lisa G. Horvath

Plasma PTEN-PI3K-AKT Pathway Aberrations in mCRPC
Provision of study materials or patients: Edmond M. Kwan, Nicole Ng, Kate Mahon, Winston Tan, Zhixin Zhao, Lisa G. Horvath, Shidong Jia, Manish Kohli, Arun A. Azad

Collection and assembly of data: Edmond M. Kwan, Heidi Fettke, Maria M. Docanto, Patricia Bukczynska, Nicole Ng, Siavash Foroughi, Lisa-Jane K. Graham, Kate Mahon, Winston Tan, Xiaohong Wang, Zhixin Zhao, Tiantian Zheng, Kemin Zhou, Manish Kohli, Arun A. Azad

Data analysis and interpretation: Edmond M. Kwan, Chao Dai, Heidi Fettke, Christine Hauser, Winston Tan, Jianjun Yu, Pan Du, Shidong Jia, Manish Kohli, Arun A. Azad

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/doi/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Edmond M. Kwan

Honoraria: Janssen, Ipsen, Astellas Pharma, Research Review
Consulting or Advisory Role: Astellas Pharma, Janssen, Ipsen
Research Funding: Astellas Pharma, AstraZeneca
Travel, Accommodations, Expenses: Astellas Pharma, Pfizer, Ipsen, Roche

Siavash Foroughi

Stock and Other Ownership Interests: CSL Limited, Oncosil, Mesoblast

Lisa-Jane K. Graham

Patents, Royalties, Other Intellectual Property: I am listed in a “Rewards to Inventors” Scheme with the Institute of Cancer Research London Enterprise Unit as part of a research project I was involved in working at the Institute of Cancer Research London (in collaboration with Astex Therapeutics (now Astex Pharmaceuticals)) to develop novel small molecule inhibitors of PKB (AKT) from 2003-2005. The research was taken over by AstraZeneca in 2005. Payments are made to all inventors in the scheme when milestones are met, and paid by the ICR London Enterprise Unit

Kate Mahon

Research Funding: Mundipharma

Winston Tan

Honoraria: Medscape, Onclive

Xiaohong Wang

Employment: Predicine

Kemin Zhou

Employment: Denovo Biopharma, Predicine Inc.

Jianjun Yu

Employment: Predicine

Leadership: Predicine

Stock and Other Ownership Interests: Predicine

Pan Du

Employment: Predicine

Leadership: Predicine

Stock and Other Ownership Interests: Predicine

Lisa G. Horvath

Employment: Connected Medical Solutions

Leadership: Connected Medical Solutions

Stock and Other Ownership Interests: Connected Medical Solutions, Imagion Biosystems

Shidong Jia

Employment: Predicine, Genentech

Leadership: Predicine

Stock and Other Ownership Interests: Predicine

Manish Kohli

Honoraria: Advanced Accelerator Applications

Travel, Accommodations, Expenses: Celgene

Arun A. Azad

Honoraria: Janssen, Astellas Pharma, Novartis, Tolmar, Amgen, Pfizer, Bayer, Telix Pharmaceuticals, Bristol-Myers Squibb, Merck Serono, AstraZeneca, Sanofi, Ipsen, Merck Sharp & Dohme, Noxopharm

Consulting or Advisory Role: Astellas Pharma, Novartis, Janssen, Sanofi, AstraZeneca, Pfizer, Bristol-Myers Squibb, Tolmar, Telix Pharmaceuticals, Merck Sharp & Dohme, Bayer, Ipsen, Merck Serono, Amgen, Noxopharm

Speakers’ Bureau: Astellas Pharma, Novartis, Amgen, Bayer, Janssen, Ipsen, Bristol-Myers Squibb, Merck Serono

Research Funding: Astellas Pharma, Merck Serono, Novartis, Pfizer, Bristol-Myers Squibb, Sanofi, AstraZeneca, GlaxoSmithKline, Aptevo Therapeutics, MedImmune, Bionomics, Synthorx, AstraZeneca, Astellas Pharma, Ipsen, Merck Serono

Travel, Accommodations, Expenses: Astellas Pharma, Sanofi, Merck Serono, Amgen, Janssen, Tolmar, Pfizer

No other potential conflicts of interest were reported.

REFERENCES

Downloaded from ascopubs.org by F. Hoffmann - La Roche AG on April 7, 2021 from 072.034.128.250
Copyright © 2021 American Society of Clinical Oncology. All rights reserved.
Plasma PTEN-PI3K-AKT Pathway Aberrations in mCRPC

Patients with mCRPC (N = 243)

Australian cohort
Plasma samples (n = 78)

US cohort
Plasma samples (n = 165)

cfDNA extraction

≥ 5 ng

Samples library preparation, enrichment, and sequencing (n = 78)

Samples library preparation, enrichment, and sequencing (n = 159)

< 5 ng

Failed (n = 6)

≥ 5 ng

Failed (n = 6)

Samples passed NGS QC (n = 78)

Samples passed NGS QC (n = 153)

Patients with mCRPC in primary analysis (n = 231)

Failed library or enrichment QC (n = 3)

Failed NGS QC (n = 3)

FIG A1. Workflow for assessable blood samples in the Australian and US cohorts. cfDNA, cell-free DNA; mCRPC, metastatic castration-resistant prostate cancer; NGS QC, next-generation sequencing quality control.
FIG A2. Kaplan-Meier curve of overall survival (OS) according to PIK3CA and AR copy number variation status. Kaplan-Meier analysis of OS according to the presence of (A) PIK3CA gain in Australian cohort, (B) AR gain in Australian cohort, (C) PIK3CA gain in US cohort, and (D) AR gain in US cohort. HR, hazard ratio.
FIG A3. Kaplan-Meier curve of overall survival (OS) according to cumulative CNVs in PTEN-PI3K-AKT and AR pathways in combined Australian and US cohorts analyzed by ctDNA fraction. Kaplan-Meier analysis of OS according to cumulative CNVs for patients (A) below 2% ctDNA fraction and (B) above or equal to 2% ctDNA fraction. AR, androgen receptor; CNV, copy number variation; ctDNA, circulating tumor DNA; HR, hazard ratio.