Predictive value of plasma tumor mutation burden (TMB) in the CCTG PA.7 trial: Gemcitabine (GEM) and Nab-Paclitaxel (Nab-P) vs. GEM, Nab-P, Durvalumab (D) and Tremelimumab (T) as First Line Therapy in Metastatic Pancreatic Ductal Adenocarcinoma (mPDAC)

Daniel Renouf, Jonathan Loree, Jennifer Knox, Petr Kavan, Derek Jonker, Stephen Welch, Felix Couture, Frederic Lemay, Moustapha Tehfe, Mohammed Harb, Nathalie Aucoin, Yoo-Joung Ko, Patricia A. Tang, James Topham, Shidong Jia, Pan Du, David Schaeffer, Sharlene Gill, Dongsheng Tu, Chris O’Callaghan
Background:

- The PA.7 trial assessed the efficacy of Gemcitabine + Nab-Paclitaxel given in combination with PD-L1 and CTLA-4 inhibition (Durvalumab and Tremelimumab)
- High TMB has been associated with immunotherapy sensitivity

CCTG PA.7 Study Schema

- Patients with treatment naïve metastatic PDAC
- Stratify:
 - ECOG
 - Prior Adjuvant Therapy
- Sample Size: 180
- 2-sided \(\alpha = 0.10 \)
- 80% power

Primary endpoint:
- OS
Secondary endpoints:
- PFS
- Safety and toxicity
- ORR
Tertiary endpoints:
- QoL
- Correlative studies
Methods:

- cfDNA analysis performed on pre-treatment plasma samples
 - Sequenced with PredicineATLAS™ NGS Assay
 - 600-gene, 2.4 Mb panel
 - Pre-specified cut point of 5 mut/MB selected based on distribution of TMB in the trial
 - A minimum p-value approach was used to assess other cut-points

- Plasma TMB analysis was performed on 174/180 patients with available samples
 - Tumor derived variants detected in 173/174 patients (99.4%)
 - 172 patients were MSS and 1 was MSI-H
Results: Pre-specified cut-point showed no utility as a predictive biomarker but increased TMB suggests benefit

Overall Survival in Patients with TMB ≥ 5 mut/MB (27/174 (4.6%))

Exploratory analysis showed a trend for decreasing HR favoring the immunotherapy arm above the selected cut point, with no benefit in the low TMB group

P-interaction = 0.91
Results: A cut-point of 9 mut/MB appeared predictive of benefit in the immunotherapy arm

Overall Survival in Patients with TMB <9 mut/MB (166/174 (95.4%))

TMB<9 - Overall Survival

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>G+N+D+T</th>
<th>G+N</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>90</td>
<td>66</td>
</tr>
<tr>
<td>90</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>66</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>45</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>29</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Median OS: 8.87 mo
10.1 mo

Hazard Ratio: 0.97;
90% CI (0.73-1.29)
P = 0.85

Overall Survival in Patients with TMB ≥9 mut/MB (8/174 (4.6%))

TMB>=9 - Overall Survival

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>G+N+D+T</th>
<th>G+N</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Median OS: 1.25 mo
14.6 mo

Hazard Ratio: 0.30;
90% CI (0.06-1.37)
P = 0.19

P-interaction = 0.064 (significant at pre-specified p=0.1)
Conclusions:

- Plasma TBM analysis was successful in over 99% of patients with available samples.
- Plasma TMB ≥9 mut/Mb may predict benefit from the addition of dual immune checkpoint inhibitors (D and T) to Gem and Nab-P.
- While only present in a subgroup of pts (4.6%), this data defines a group beyond MSI-H PDAC that should be investigated further for the benefit of immunotherapy.
- A clinical trial specifically assessing the role of chemotherapy combined with immune checkpoint inhibition in high TMB mPDAC is warranted.