Cell-free DNA comparative analysis of hormone-receptor positive, first-line metastatic breast cancer genomic landscapes in US and China

Huiping Li1, Andrew Adam Davis2, Xiang-Pan Liu1, Feng Xie1, Xin-Yu Gu1, Yi-Fei Chen1, Qiang Zhang2, Lorenzo Gerratana2, Youlin Zhang2, Ami Shain3, Amir Behdad4, Firas Werbe2, Yang Huang1, Jianjun Yu2, Pan Du1, Shidong Jia1, Massimo Cristianoiiii2

1. Peking University Cancer Hospital and Institute, Beijing, China; 2. Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL; 3. Huidu Shanghai Medical Sciences Ltd., Shanghai, 201499, China. 4 Predictine Inc., Hayward, CA 94545, USA

Introduction

Metastatic breast cancer (MBC) is a heterogeneous disease associated with known somatic mutations of variable biological value in different subtypes. Furthermore, the clinical evolution of the disease demonstrates clonal evolution resulting in disease resistance more accurately detected using blood-based sequencing.

Few studies have explored differences in genomic features of tumors across populations. Here, we performed circulating tumor DNA (ctDNA) sequencing to compare the genomic landscape of patients with hormone-receptor positive MBC at time of first recurrence or de-novo metastatic diagnosis in the United States (US) and China.

Methods and Materials

Patients: Twenty-three first recurrence HR+ MBC US patients from Northwestern University and six-five Chinese patients with same characteristics from Peking University NGS testing: ctDNA sequencing from plasma was performed using the harmonized CLIA-certified, 152-gene PredictineCARE™ NGS assay in laboratories in the US and China, respectively. The data analysis was conducted in China. Institutional Review Boards at each site approved the study. Fisher’s exact test was performed to compare mutational frequencies across populations.

Figure 1: Workflow for Predictine’s PredictineCARE liquid biopsy assay

- a. Predictine ctDNA NGS workflow
- b. Bioinformatics analysis workflow

- Blood collection
- ctDNA extraction
- Library construction, TARGET enrichment
- Sequencing
- UMI indexed sequencing reads
- DeepSEA variant caller
- Standardize the target coverage profile
- Variant filtration
- Normal controls
- SNV/Indel, CNV and Fusion variants

Results

Figure 2: ctDNA mutation profiles of HR positive, first line metastatic breast patients in US and China

a. SNV/Indel molecular profile analysis between patients in US and China

b. Variant rate comparison

-snv/indel
- copy number gain
- copy number loss

Figure 3: Survival analysis: PTEN copy number loss and ESR1 activating mutation carriers have overall short PFS

- Chinese dataset – copy number loss
- US dataset – copy number loss
- Chinese dataset – CNV + SNV/Indel
- US dataset – CNV + SNV/Indel

Conclusions

- This is the first study that a harmonized ctDNA assay (152-gene PredictineCARE) was used to profile plasma samples of first recurrence HR+ MBC patients in US and China.
- Most commonly mutated genes in the US and China study populations were similar. However, the occurrence of several abnormalities, including SNV/Indel of PIK3CA, AKT1, CCND1 and CNV of FGFR1, CCND2and ATM were significantly different between the US and China study populations.
- PTEN copy number loss and ESR1 mutations were significantly associated with PFS in the Chinese study population. Similar trends were also observed in the US study population, but were statistically underpowered due to the small sample size.